MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ * *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
/* = = [ ] ω , , .=
O postulado de Planck é um dos princípios fundamentais da mecânica quântica, postulando que a energia dos osciladores em um corpo negro é quantificada, e é dada por
onde inteiro (1, 2, 3...), é a constante de Planck e (a letra grega nu, não a letra latina v) é a frequência do oscilador.
é umNa mecânica quântica, o potencial delta é um poço de potencial matematicamente descrito pela função delta de Dirac - uma função generalizada. Qualitativamente, corresponde a um potencial[nt 1] que é zero em todos os lugares, exceto em um único ponto, onde leva um valor infinito[2].
Potencial delta único
A equação de Schrödinger independente do tempo para a função de onda ψ(x) de uma partícula em uma dimensão em um potencial V(x) é
onde ħ é a constante reduzida de Planck e E é a energia da partícula.
O potencial delta é o potencial
onde δ(x) é a função delta de Dirac.
É chamado um potencial de poço delta se λ é negativo e um potencial de barreira delta se λ é positivo. O delta foi definido para surgir na origem por simplicidade; uma mudança no argumento da função delta não altera nenhum dos resultados procedentes[
Por volta dos meses superprodutivos de 1905-1906, quando Einstein formulou não apenas a sua teoria da capacidade de calor, mas também a teoria da relatividade, ele encontra um espaço de tempo, para dar outra contribuição fundamental à física moderna. A sua realização foi vincular a hipótese quântica de Planck ao fenômeno do efeito fotoelétrico, a emissão dos elétrons de metais quando são expostos à radiação ultravioleta.
Einstein apontou que todas as observações se encaixavam caso o campo eletromagnético fosse quantificado, e que consistia em feixes de energia de magnitude . Estes pacotes foram mais tarde nomeados de fótons por G.N. Lewis, e esse termo passou a ser utilizado. Einstein viu o efeito fotoelétrico como resultado de uma colisão entre um projétil de entrada, um fóton de energia , e um elétron presente no metal. Esta imagem explica o carácter instantâneo do efeito, porque até mesmo um fóton pode participar numa colisão. Também foi responsável pelo limite de frequência porque uma energia mínima (que normalmente é denotada por e chamada 'função trabalho' para o metal, o análogo da energia de ionização de um átomo) deve ser fornecida em uma colisão antes que a ejeção do fóton possa ocorrer; por conseguinte, apenas radiação para a qual pode ser bem-sucedida. A dependência linear da energia cinética, , do fotoelétron da frequência da radiação é uma consequência simples da conservação de energia, o que implica que:
Se os fótons tiverem um caráter semelhante a uma partícula, então eles devem possuir um momento linear, p. A expressão relativista que relaciona a energia de uma partícula com à sua massa e momento é
onde c é a velocidade da luz. No caso de um fóton, e , então:
Esse momento linear deve ser detectável se a radiação cair em um elétron, pois uma transferência parcial do momento durante a colisão deve aparecer como uma alteração do comprimento de onda dos fótons.
Comments
Post a Comment